Chavis Park, Garner Branch Stream Restoration Project

For

North Carolina Department of Environment and Natural Resources Division of Water Quality Wetland Program Stream and Riparian Area Restoration Raleigh, North Carolina

February 26, 2002

Prepared By:

Natural Areas Ecosystem Management 10015 Wright Road Harvard IL 60033

Appalachian Environmental Services PO Box 52 Webster NC 28788

Becky L. Ward Consulting 1512 Eglantyne Court Raleigh NC 27613

Garner Branch Stream Restoration Project Chavis Park Raleigh, NC Table of Contents

Introduction

Project Location

Problem Statement

Unstable Channel Configuration

Poor Water Quality

Bed Features

Vegetation

Habitat

Project Goals and Objectives

Watershed Conditions

Stream Reference Reach Site

Stream Restoration Plan

Storm Drainage Retrofits

Riparian Restoration

Exhibits

Chavis Park Downtown Raleigh Location Map

Garner Branch Location Map within Chavis Park

Watershed Delineation Map

Project Site Photographs

Supporting Stream Calculations

Supporting Storm Drainage Calculations

Bank Erosion Potential Data

Garner Branch Stream Restoration Project

Chavis Park, Raleigh North Carolina

Introduction

The Wetlands Restoration Program identified the Garner Branch project in 1999 for a design project. Garner Branch was investigated from the Confluence with Walnut Creek to the origin of the stream at Lenoir Street. After submittal of preliminary findings to WRP final design/build plans were prepared for the reach of Garner Branch from Martin Luther King Boulevard to Lenoir Street approximately 1,830 linear feet. Two short segments of tributaries within the Chavis Park boundaries were also included in this project. The first location is approximately 250 linear feet of tributary just upstream of Station 55+00. The second tributary is located just above Station 63+00 and is approximately 120 feet in length. Therefore the total project stream length included in this submittal is approximately 2,200 linear feet.

Project Location

The project is located on Garner Branch within the limits of Chavis Park. Chavis Park is a very old & established park located in downtown Raleigh, North Carolina. The park is an urban park located approximately one mile south east of the state capitol building in downtown Raleigh. The upstream limit of the project is Lenoir Street and the lower limit is Martin Luther King Boulevard.

Problem Statement

Unstable Channel Configuration:

The channel has incised over the years through out the park. Based on the tributary plan, profile, and dimensions, the stream was classified as a G4c type. A G type stream is generally described as an entrenched "gully step/pool channel with low width-to-depth ratios on moderate gradients. Isolated short reaches of the channel did exhibit other Rosgen stream Characteristics, but the G4c appears to be the most representative of the typical stream condition. The existing channel pattern throughout the stream is causing further instability in the steep banks due to the erosion occurring at the toe. In much of the stream the floodplains are too high, not allowing for frequent storm water access. The existing stream above station 64+00 was classified as an E4 stream. The existing pattern in this region is also causing extensive erosion on high banks within bends.

Poor Water Quality:

The water quality in the stream is impacted both by the urban environment and by the sediment caused by eroding banks. The watershed is comprised of downtown Raleigh. The stream receives sediment starved storm water being released through a concrete culvert at the origin of the project. Further along the stream length sediment is being released from continually eroding banks. Bank Erosion Hazard Indexes were completed for eleven locations along the stream reach. The values ranged from moderate to very high with an average index of 32 (High).

An environmental assessment was preformed on the stream with these results. Bioclassification ratings were Poor as EPT Taxa were few and Biotic Index values were high, indicative of poor water quality. Tolerance values for individual benthic

mocroinvertebrate species varried from 0 to 10, with the higher numbers indicating more tolerant species found in polluted conditions.

Bed Features:

The bed of the stream is featureless throughout much of its length. There are several rock nick points that are controlling the grade of the channel especially in the lower reaches below station 59+00.

Vegetation:

The vegetation that is present in the channel is primarily non-native species. The vegetation ranges from very sparse to vigorous vegetation communities. Bank vegetation protection is poor. The existing stream riparian vegetation is low. The park maintains moved grass almost to the top of bank along the stream.

Habitat:

The stream has poor habitat. The urban watershed characteristics create storm events that have large peak discharges that occur quickly and produce high velocities. Abundant instream cover is not present and fines are currently embedding the channel.

Project Goals and Objectives

The objective of this stream restoration project is to improve the water quality, riparian quality and stability of the stream. Restoring the natural flow pattern of the stream and stabilizing the steep channel banks will accomplish this. Long-term stabilization will be accomplished by planting the riparian area with native vegetation.

- Reduce bank erosion by adjustment of the existing channel pattern or by bioengineered methods.
- Improve water quality by reducing erosion and by increasing the connectivity between the channel and floodplain.
- Stabilize the bankfull elevation along the reach.
- Enhance in stream habitat by placing structures, overhanging vegetation and removal of aggressive species.
- Enhance riparian corridor with native vegetative species to improve the function and aesthetic value.
- Slope and vegetate the stream banks so that they are more resistant to flooding.
- Plant native trees, bushes and ground cover that will stabilize the stream banks, shade the stream, and provide wildlife cover and food.

Watershed Conditions

Garner Branch a tributary of Walnut Creek is located in Downtown Raleigh. The main channel begins just south of East Cabarrus Street and continues south through primarily residential neighborhoods and Chavis Park until it enters Walnut Creek just west of State Street. This project will only include work on Garner Branch from Lenoir Street to Martin Luther King Boulevard. The watershed is approximately 347 acres (0.54 square miles) to our point of interest at Martin Luther King Boulevard.

The watershed basin has a western boundary located primarily along Rock Quarry Road and Cumberland Street. The northern boundary extends almost to New Bern Avenue and the eastern limit is approximately defined by Chavis Way. The southern watershed boundary is Martin Luther King Boulevard.

The watershed contributing stormwater runoff to Garner Branch is very urban and fully developed. The current zoning and planimetric maps from the City of Raleigh show three-quarters of the watershed development consists primarily of residential high density properties. Land usage in the upper north-eastern quarter of the watershed supports dense developments of downtown city offices, businesses and industrial facilities.

The soils in the watershed basin are identified in the Wake County North Carolina Soil Survey published by the US Department of Agriculture Soil Conservation Service. These soils consist primarily of Cecil and Appling Sandy Loam in the upland areas and Worsham Sandy Loam and Wehadkee soils in the floodplains adjacent to the stream.

Cecil soils are identified in the survey for the segment of the tributary that extends north of Martin Luther King Boulevard within the stream corridor, floodplains, and most of the adjacent watershed upland area. Cecil soils are characterized with fair infiltration rates, rapid surface runoff, and a moderate to very severe hazard of further erosion.

Stream Reference Reach Site

Brookhaven Park in Raleigh was used as the reference reach channel for the stream plan form design from station 64+00 through station 69+00. The reference reach site was surveyed by NC State in 1998. The reference reach is a stream type C4. The watershed size for the reference reach is 0.14 square miles. The watershed area for the project site at station 64+00 is 0.14 square miles.

Stream Restoration Plan

The stream work being proposed consists of stream bank stabilization, in-stream structures, stream plan form adjustments and storm drainage retrofits. The existing non-native and nuisance vegetation along the steep stream banks will be cleared along the entire 2,200 linear feet and replanted with native species that will be sensitive to the park setting and visibility concerns. In-stream structures are proposed to establish additional bedform and provide better habitat. Some bio-technical practices are proposed in areas where the banks are steep and severely eroded.

The proposed work will be preformed within the confines of the existing incised channel. At locations where possible the banks will be sloped back to stable slopes before revegetation. The tops of these banks now functioning as a terrace are 12 to 25 feet in height along the stream length. Sanitary sewer lines, park asphalt walkways, roadways, and park shelter buildings are located in close proximity to these terrace edges. Park pedestrian bridges, a very old stone bridge, and utility lines cross the creek. No utilities except for storm water discharge point sources into the creek are proposed to be changed during construction. All existing bridges will remain in place. A cross vane will be placed down stream of the stone bridge set at the elevation of the existing footings to

assist in re-establishing the channel grade through the bridge structure. The City of Raleigh will be performing repairs necessary to this stone bridge and footings.

From station 52+60 to station 62+00 the work will primarily consist of stream bank stabilization and re-grading of the stream floodplain. The floodplain will be reworked to allow for more frequent stormwater access. A "W" Vane structure will be placed just upstream of the Martin Luther King culverts to help direct the flow into both barrels. A second rock vane will be installed between the "W" Vane and the existing upstream bedrock to assist in redirecting the flow away from the reconstructed bank. At station 55+50 the existing in-stream island will be cut down and will be replanted with wetland vegetation.

At station 64+00 through 69+00 the stream will be re-meandered through the floodplain. Where the floodplain is restricted it will be widened to obtain more pattern and assist with bankfull as well as large stormwater flows. The proposed channel was designed based on the Rosgen method. The only parameter that could not be consistently obtained in this reach is the belt width. Due to the close proximity of Chavis Way to the north and utility lines to the south the required belt width stayed at the low end of the range or below. The morphological characteristics of the existing, proposed and reference reach is shown in the table below.

Variables	Existing Channel	Proposed Reach	Reference Reach
Stream type	E4	C4	C4
Drainage Area	0.14 Urban	0.14 Urban	0.14 rural
(Sq. Mile)			
Bankfull width	12 ft	23 ft	12.8 ft
(Wbkf)	16-24	21-25	10-15.6
Bankfull mean	1.55 ft.	1.2 ft.	0.67 ft
depth (dbkf)	1.4-2.0	1.1-1.3	0.55-0.8
Width/depth ratio	7.7	19	19.4
(Wbkf/dbkf)		18-21	18.2-20.6
Bankfull Cross	18.6 sq ft	25 sq ft	8.6 sq ft
Sectional Area			5.5-11.8
(Abkf)			
Bankfull Mean	5.7 ft/sec	4.2 ft/sec	3.5 ft/sec
Velocity (Vbkf)			
Bankfull Discharge,	107	115	30
cfs (Qbkf)			
Bankfull Maximum	3.0-3.8 ft	1.76 ft	1.1
depth (dmax)		1.65-1.98	1-1.2
Max driff/dbkf ratio	2.2	1.6	1.64
		1.5-1.8	1.5-1.8
Low bank Height to	1.2	1.0	1.0
max dbkf		0.9-1.1	0.9-1.1
Width of flood	52-57 ft	52 ft	27 ft
prone area (Wfpa)		40-63	19-33

Entrenchment ratio (Wfpa/Wbkf)				
Meander length (Lm) 96 ft. 80ft 70-108 47 ft Ratio of meander length to bankfull width (Lm/Wbkf) 8 3.5 3.7 length to bankfull width (Lm/Wbkf) 20 32 23.5 Ratio of radius of Curvature (Re) 8-31 23-40 12-35 Ratio of radius of curvature to bankfull width (Re/Wbkf) 1.67 1.4 1.8 Delt width (Wblt) 37 ft 43 ft 34.5 ft Belt width (Wbkf) 37 ft 43 ft 34.5 ft Belt width (Wbkf) 3.0 1.9 2.7 Well-Wbkf) 3.0 1.9 2.7 Will-Wbkf) 1.05 1.1 1.7 Incomplex of the will will will will will will will wil	Entrenchment ratio	4.5	(2.2)	2.6
Meander length (Lm)	(Wfpa/Wbkf)		1.9-2.5	1.9-3.3
CLm 70-108 Ratio of meander 8 3.5 3.7		96 ft.	80ft	47 ft
Inength to bankfull width (Lm/Wbkf) Addits of Curvature (Re) Realius of Curvature (Re) Realius of Curvature (Re) Realius of Curvature to bankfull width (Re/Wbkf) Realius of Pool width (Realius of Pool Realius Of P	-		70-108	
width (Lm/Wbkf) 20 32 23.5 Radius of Curvature (Re) 8-31 23-40 12-35 Ratio of radius of curvature to bankfull width (Re/Wbkf) 1.67 1.4 1.8 Belt width (Wblt) 37 ft 19-50 35-50 28-41 Meander width ratio (Wblt/Wbkf) 3.0 1.9 2.7 Sinuosity (stream length /valley distance) (R) 1.05 1.1 1.7 Valley slope (ft/ft) 0.0054 0.0054 0.027 Average slope (Svalley /k) 0.0052 .0049 0.016 Savg= (Svalley /k) 0.001 0.004 0.001 Pool Slope (Spool) 0.001 0.004 0.001 Average slope (spool/Sbkf) 0.14 0.06 / 0.009 0.003 Ratio of pool slope to average slope (spool/Sbkf) 1.8 2.98 2.98 Maximum pool depth daylool 1.8 2.98 2.98 to average bankfull depth (dpool/dbkf) 1.8 2.98 2.98 Ratio of pool width (Wpool) 10 ft 17 ft 9.8 ft Ration of pool s	Ratio of meander	8	1	
Radius of Curvature Record (Record Record Recor	length to bankfull	4-6	3.0-4.7	3.0-4.7
Ratio of radius of curvature to bankfull width (Re/Wbkf)	width (Lm/Wbkf)			
Ratio of radius of curvature to bankfull width (Rc/Wbkf) Belt width (Wblt) Belt width (Wblt) Simosity (stream length /valley distance) (k) Valley slope (fl/ft) Pool Slope (Spool) Ratio of pool depth to average slope (spool/Sbkf) Maximum pool depth to average bankfull depth (dpool/dbkf) Pool width (Wpool) Ratio of pool spacing (p-p) Ad-95 Spacing to bankfull 2.4-3.1 3.1-3.9	Radius of Curvature		1	i i
curvature to bankfull width (Rc/Wbkf) 1.1-1.6 1.0-2.7 Belt width (Wblt) 37 ft 19-50 43 ft 3ft 34.5 ft 28-41 Meander width ratio (Wblt/Wbkf) 3.0 1.9 2.7 Sinuosity (stream length /valley distance) (k) 1.05 1.1 1.7 Valley slope (fl/ft) 0.0054 0.0054 0.027 Average slope (Savg= (Svalley /k) 0.001 0.004 0.001 Pool Slope (Spool) 0.001 0.004 0.001 Ratio of pool slope to average slope (spool/Sbkf) 0.018 0.06 Maximum pool depth (dpool) 2.8 ft 3.5 ft 2.0 ft 2.98 2.98 Ratio of pool depth to average bankfull depth (dpool/dbkf) 1.8 2.98 2.98 Ration of pool width to bankfull width (Wpool) 0.83 0.76 0.76 Wpool/Wbkf) 0.83 0.76 0.76 Ratio of pool area to bankfull area 1.2 1.12 1.1-1.2 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft 45 ft 45 ft 49-5 40-50 Ration of p-p spacing to bankfull 6 2.8 3.5 Spacing to bank				
bankfull width (Rc/Wbkf) Belt width (Wblt) Belt width (Wblt) Belt width (Wblt) 19-50 35-50 28-41 Meander width ratio (Wblt/Wbkf) 1,5-2.2 2,2-3.2 Simuosity (stream length /valley distance) (k) Valley slope (fl/ft) Pool Slope (Spool) Ratio of pool slope to average slope (spool/Sbkf) Maximum pool depth to average bankfull depth (dpool/dbkf) Pool width (Wpool) Ratio of pool width to bankfull width (Wpool/Wbkf) Ratio of pool area to bankfull area Pool to pool spacing (p-p) Ratio of pool bankfull Ratio of pool spacing (p-p) Ratio of pool bankfull Ratio of pool spacing (p-p) Ratio of pool bankfull Ratio of pool spacing (p-p) Ratio of pool bankfull Ratio of pool spacing (p-p) Ratio of pool bankfull A3 ft (34.5 ft (Ratio of radius of	1.67	1	l l
Re/Wbkf) 37 ft 43 ft 34.5 ft 34.5 ft 19-50 35-50 28-41	i i		1.1-1.6	1.0-2.7
Belt width (Wblt) 37 ft 19-50 35-50 28-41	1			
19-50 35-50 28-41				
Meander width ratio (Wblt/Wbkf) 3.0 1.9 2.7 Sinuosity (stream length /valley distance) (k) 1.05 1.1 1.7 Valley slope (ft/ft) 0.0054 0.0054 0.027 Average slope Savg= (Svalley /k) 0.001 0.0049 0.016 Pool Slope (Spool) 0.001 0.004 0.001 Ratio of pool slope to average slope (spool/Sbkf) 1.4 0.06 / 0.06 0.06 Maximum pool depth to average bankfull depth (dpool) 1.8 2.98 2.98 Ratio of pool depth to average bankfull depth (dpool/dbkf) 2.8-3.3 2.8-3.3 2.8-3.3 Ration of pool width (Wpool) 10 ft 17 ft 9.8 ft Ratio of pool area to bankfull width (Wpool/Wbkf) 0.65-0.88 0.65-0.88 Ratio of pool area to bankfull area 1.1-1.2 1.1-1.2 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft (p-p) 44-95 50-78 40-50 Ration of p-p 6 2.8 3.5 spacing to bankfull 3.1-3.9 3.1-3.9	Belt width (Wblt)		ł i	
(Wblt/Wbkf) 1.52.2 2.2-3.2 Sinuosity (stream length /valley distance) (k) 1.05 1.1 1.7 Valley slope (ft/ft) 0.0054 0.0054 0.027 Average slope (Savalley /k) 0.0052 .0049 0.016 Pool Slope (Spool) 0.001 0.004 0.001 Ratio of pool slope to average slope (spool/Sbkf) 1.4 0.06 ✓ 0.06 Maximum pool depth (dpool) 2.8 ft 3.5 ft 2.0 ft Maximum pool depth (dpool) 1.8 2.98 2.98 Ratio of pool depth (dpool/dbkf) 2.8-3.3 2.8-3.3 2.8-3.3 Ration of pool width (Wpool) 10 ft 17 ft 9.8 ft Ratio of pool area to bankfull width (Wpool/Wbkf) 0.65-0.88 0.65-0.88 Ratio of pool area to bankfull area 1.1-1.2 1.1-1.2 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft (p-p) 44-95 50-78 40-50 Ration of p-p spacing to bankfull 6 2.8 3.5 spacing to bankfull 3.1-3.9 <td< td=""><td></td><td></td><td></td><td></td></td<>				
Sinuosity (stream length /valley distance) (k) 1.05 1.1 1.7 Valley slope (ft/ft) 0.0054 0.0054 0.027 Average slope Savg= (Svalley /k) 0.0052 .0049 0.016 Savg= (Svalley /k) 0.001 0.004 0.001 Pool Slope (Spool) 0.001 0.004 0.001 Ratio of pool slope to average slope (spool/Sbkf) 0-0.18 0-0.18 (spool/Sbkf) 3.5 ft 2.0 ft Maximum pool depth to average bankfull depth (dpool) 1.8 2.98 2.98 Ratio of pool depth to average bankfull depth (dpool/dbkf) 1.6 1.7 ft 9.8 ft Pool width (Wpool) 10 ft 17 ft 9.8 ft Is-20 8.4-11.3 8.4-11.3 Ration of pool width to bankfull width (Wpool/Wbkf) 0.65-0.88 0.65-0.88 Ratio of pool area to bankfull area 1.1-1.2 1.1-1.2 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft Ration of p-p 6 2.8 3.5 spacing to bankfull 2.4-3.1 3.1-3.9 <		3.0	1	
length /valley distance) (k)				
distance) (k) Valley slope (fl/ft) 0.0054 0.0054 0.027 Average slope Savg= (Svalley /k) 0.0052 .0049 0.016 Pool Slope (Spool) 0.001 0.004 0.001 Ratio of pool slope to average slope (spool/Sbkf) 0.14 0.06	,	1.05	(1.1	1.7
Valley slope (fl/ft) 0.0054 0.0054 0.027 Average slope Savg= (Svalley /k) 0.0052 .0049 0.016 Pool Slope (Spool) 0.001 0.004 0.001 Ratio of pool slope to average slope (spool/Sbkf) 0.14 0.06			The state of the s	
Average slope Savg= (Svalley /k) Pool Slope (Spool) Ratio of pool slope to average slope (spool/Sbkf) Maximum pool depth (dpool) Ratio of pool depth to average bankfull depth (dpool/dbkf) Pool width (Wpool) Ratio of pool width to bankfull width (Wpool/Wbkf) Ratio of pool area to bankfull area Pool to pool spacing (p-p) Ratio of p-p spacing to bankfull Average slope 0.001 0.004 0.0001 0.0004 0.0001 0.0004 0.0001 0.0004 0.0001 0.0004 0.001 0.001 0.0004 0.001 0.001 0.006 0.006 0.006 0.006 0.006 0.008 0.006 0.001 0.0001 0				0.000
Savg= (Svalley /k) 0.001 0.004 0.001 Pool Slope (Spool) 0.001 0.004 0.009 Ratio of pool slope to average slope (spool/Sbkf) 0.06 0.06 Maximum pool depth (dpool) 2.8 ft 3.5 ft 2.0 ft Ratio of pool depth to average bankfull depth (dpool/dbkf) 2.8-3.3 2.8-3.3 2.8-3.3 Pool width (Wpool) 10 ft 17 ft 9.8 ft Ration of pool width to bankfull width (Wpool/Wbkf) 0.83 0.76 0.76 Ratio of pool area to bankfull area 1.2 1.12 1.12 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft Ration of p-p spacing to bankfull 60 2.8 3.5 spacing to bankfull 3.1-3.9 3.1-3.9				
Pool Slope (Spool) 0.001 0.004 0-0.009 0.001 0003 Ratio of pool slope to average slope (spool/Sbkf) .14 0.06 ≠ 0-0.18 0.06 0-0.18 Maximum pool depth (dpool) 2.8 ft 3.5 ft 2.0 ft Ratio of pool depth to average bankfull depth (dpool/dbkf) 1.8 2.98 2.98 Pool width (Wpool) 10 ft 17 ft 9.8 ft Ration of pool width to bankfull width (Wpool/Wbkf) 0.83 0.76 0.76 Ratio of pool area to bankfull area 1.2 1.12 1.1-1.2 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft (p-p) 44-95 50-78 40-50 Ration of p-p spacing to bankfull 6 2.8 3.5 3.1-3.9	1	0.0052	.0049	0.016
Ratio of pool slope to average slope (spool/Sbkf) .14 0.06 ✓ 0.06 0.06 Maximum pool depth (dpool) 2.8 ft 3.5 ft 2.0 ft Ratio of pool depth to average bankfull depth (dpool/dbkf) 1.8 2.98 2.98 Pool width (Wpool) 10 ft 17 ft 9.8 ft Ration of pool width to bankfull width (Wpool/Wbkf) 0.83 0.76 0.76 Ratio of pool area to bankfull area 1.2 1.12 1.1-1.2 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft (p-p) 44-95 50-78 40-50 Ration of p-p spacing to bankfull 62.8 3.5 spacing to bankfull 2.4-3.1 3.1-3.9			0.004	0.001
Ratio of pool slope to average slope (spool/Sbkf) .14 0.06	Pool Slope (Spool)	0.001		
to average slope (spool/Sbkf) Maximum pool depth (dpool) Ratio of pool depth to average bankfull depth (dpool/dbkf) Pool width (Wpool) Ratio of pool width to bankfull width (Wpool/Wbkf) Ratio of pool area to bankfull area Pool to pool spacing (p-p) Ration of pop Sacing (p-p) Ration of pool width (Wpool) Ration of pool spacing to bankfull Ration of pool spacing (2-4-3.1) Ration of pool spacing to bankfull O- 0.18 0- 0.1		4.4.		
(spool/Sbkf) 2.8 ft 3.5 ft 2.0 ft depth (dpool) 3.3-3.9 1.9-2.2 Ratio of pool depth to average bankfull depth (dpool/dbkf) 2.8-3.3 2.8-3.3 Pool width (Wpool) 10 ft 17 ft 15-20 9.8 ft 15-20 Ration of pool width to bankfull width (Wpool/Wbkf) 0.83 0.76 0.76 0.76 Wpool/Wbkf) 0.65-0.88 0.65-0.88 Ratio of pool area to bankfull area 1.12 1.12 1.1-1.2 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft 45 ft 45 ft 40-50 40-50 Ration of p-p spacing to bankfull 6 2.8 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5		.14		
Maximum pool depth (dpool) 2.8 ft 3.5 ft 2.0 ft Ratio of pool depth to average bankfull depth (dpool/dbkf) 1.8 2.98 2.98 Pool width (Wpool) 10 ft 17 ft 9.8 ft Ration of pool width to bankfull width (Wpool/Wbkf) 0.83 0.76 0.76 Ratio of pool area to bankfull area 1.2 1.12 1.12 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft Ration of p-p spacing to bankfull 6 2.8 3.5 spacing to bankfull 2.4-3.1 3.1-3.9	1 2 1		0- 0.18	0- 0.18
depth (dpool) 3.3-3.9 1.9-2.2 Ratio of pool depth to average bankfull depth (dpool/dbkf) 2.8-3.3 2.8-3.3 Pool width (Wpool) 10 ft 17 ft 15-20 9.8 ft 15-20 Ration of pool width to bankfull width (Wpool/Wbkf) 0.83 0.76 0.76 0.65-0.88 Ratio of pool area to bankfull area 1.2 1.12 1.12 1.1-1.2 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft 45 ft 40-50 Ration of p-p spacing to bankfull 6 2.8 3.5 3.5 3.5 3.5 3.5 3.5 3.1-3.9		200	2.5.Ω	208
Ratio of pool depth to average bankfull depth (dpool/dbkf) 1.8 2.98 2.8-3.3 2.8-3.3 Pool width (Wpool) 10 ft 17 ft 9.8 ft 8.4-11.3 Ration of pool width to bankfull width (Wpool/Wbkf) 0.83 0.76 0.76 0.65-0.88 Ratio of pool area to bankfull area 1.2 1.12 1.1-1.2 1.1-1.2 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft 40-50 Ration of p-p spacing to bankfull 6 2.8 3.5 spacing to bankfull 2.4-3.1 3.1-3.9	1 - 1	2.8 ft	1	
to average bankfull depth (dpool/dbkf) Pool width (Wpool) Ration of pool width (Wpool) Ratio of pool area to bankfull area Pool to pool spacing (p-p) Ration of pop Bacing (p-p) Ration of p-p (p-p) Ration of p-p (p-p) Spacing to bankfull (p-p) Ration of p-p (p		1.0		
depth (dpool/dbkf) 10 ft 17 ft 9.8 ft Pool width (Wpool) 10 ft 17 ft 9.8 ft 15-20 8.4-11.3 8.4-11.3 Ration of pool width to bankfull width (Wpool/Wbkf) 0.65-0.88 0.65-0.88 Ratio of pool area to bankfull area 1.2 1.12 1.12 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft (p-p) 44-95 50-78 40-50 Ration of p-p spacing to bankfull 6 2.8 3.5 spacing to bankfull 2.4-3.1 3.1-3.9		1.8	1	
Pool width (Wpool) 10 ft 17 ft 9.8 ft Ration of pool width to bankfull width (Wpool/Wbkf) 0.83 0.76 0.76 Ratio of pool area to bankfull area 1.2 1.12 1.12 Pool to pool spacing (p-p) 69 ft 64 ft 45 ft Ration of p-p spacing to bankfull 60 2.8 3.5 Spacing to bankfull 2.4-3.1 3.1-3.9			2.8-3.3	2.0-3.3
Tool width (Npool) Tool width to bankfull width (Wpool/Wbkf) Tool width to bankfull width (Wpool/Wbkf) Tool width		10.6	17 6	088
Ration of pool width to bankfull width (Wpool/Wbkf) 0.83 0.76 0.76 Ratio of pool area to bankfull area 1.2 1.12 1.12 Pool to pool spacing (p-p) 69 ft 44-95 64 ft 45 ft 45 ft 40-50 Ration of p-p spacing to bankfull 62.8 3.5 3.1-3.9 3.1-3.9	Pool width (wpool)	10 11	1	
to bankfull width (Wpool/Wbkf) Ratio of pool area to bankfull area Pool to pool spacing (p-p) Ration of p-p spacing to bankfull Ratio of pool area to bankfull 1.2 1.12 1.12 1.1-1.2 1.1-1.2 64 ft 45 ft 40-50 Ration of p-p 5 2.8 spacing to bankfull 2.4-3.1 3.1-3.9	Dation of an all artists	0.92		L
Ratio of pool area to bankfull area 1.2 1.12 1.12 Pool to pool spacing (p-p) 69 ft (p-p) 64 ft (p-p) 44-95 45 ft (p-p) Ration of p-p spacing to bankfull 60 properties	1 ~ 1	0.83	I .	
Ratio of pool area to bankfull area 1.2 1.12 1.12 Pool to pool spacing (p-p) 69 ft 44-95 64 ft 45 ft 45 ft 40-50 Ration of p-p spacing to bankfull 60 2.8 3.5 3.1-3.9 3.1-3.9	1		0.03-0.00	0.05-0.00
bankfull area 1.1-1.2 1.1-1.2 Pool to pool spacing (p-p) 69 ft (44-95) 64 ft (50-78) 40-50 Ration of p-p spacing to bankfull 6 (2.8 (3.5) (3.1-3.9) 3.5 (3.1-3.9)	(wpool/woki)	,		
bankfull area 1.1-1.2 1.1-1.2 Pool to pool spacing (p-p) 69 ft (44-95) 64 ft (50-78) 40-50 Ration of p-p spacing to bankfull 6 (2.8 (3.5) (3.1-3.9) 3.5 (3.1-3.9)	Ratio of nool area to	1 7	1 12	1.12.
Pool to pool spacing (p-p) 69 ft 44-95 64 ft 50-78 45 ft 40-50 Ration of p-p spacing to bankfull 6 2.8 3.5 spacing to bankfull 2.4-3.1 3.1-3.9		1.4	i	
(p-p) 44-95 50-78 40-50 Ration of p-p spacing to bankfull 6 2.8 3.5 spacing to bankfull 2.4-3.1 3.1-3.9		69 ft		The second secon
Ration of p-p 6 2.8 3.5 spacing to bankfull 2.4-3.1 3.1-3.9			i	
spacing to bankfull 2.4-3.1 3.1-3.9				
Spacing to comment		V	i	
	width (p-p/Wbkf)			

Materials:	Existing	Proposed	Reference
Particle Size			
distribution of			
channel material			
D16	0.35 mm	0.35 mm	0.74 mm
D35	1.1	1.1	4.4
D50	3.0	3.0	16
D84	11.5	11.5	70
D95	23	23	100
Particle Size			
distribution of bar			
material			
D16	0.54 mm	0.54 mm	Not Available
D35	1.2	1.2	
D50	2.4	2.4	
D84	12	12	
D95	22	22	
Largest size particle			
at the toe (lower	2.0 inches	2.0 inches	
third) of bar			

Sediment Transport Validation		
(Based on Bankfull shear Stress)	Existing	Proposed
Calculated value	0.50	0.34
Value from Shield Diagram (lb/sq.ft.)	0.38	0.38
Critical dimensionless shear stress	0.0216	0.0216
Miminum mean dbkf calculated using critical dimensionless shear stress equations	1.2 ft	1.2 ft

Storm Drainage Retrofits:

There is currently four existing pipes that discharge stormwater into Garner Branch and one location in which two existing swales discharge water at the top of the bank causing erosion. Each retrofit is described below for existing and proposed conditions.

Retrofit "A"

An existing 24 inch diameter corrugated plastic pipe currently discharges water from the parking lot into the creek. The pipe exits the slope of the existing stream bank approximately 15 feet above the stream invert. No storm drainage system records were available to determine the connection of the system. The drainage basin is approximately 2.3 acres consisting of impervious roadways & parking lots, park grounds, and apartment land use.

The existing system proposed to be retrofitted will provide for treatment of the parking lot stormwater within a constructed grass swale approximately 50 feet in length. Currently this stormwater enters a piped system and directly discharges to the stream.

The stormwater discharge from the parking lot, along with the overland flow, will be collected into a yard inlet located at the top of the stream bank. After entering the inlet the stormwater will continue through a series of pipes and a junction box transitioning the stormwater down the bank approximately 15 feet in elevation. The pipe will then discharge at the channel elevation in between two proposed rock vanes. The existing 24 inch CPP will be connected to the yard inlet if it is determined in the field that this pipe collects water from sources other than the parking lot inlet that is shown to be retrofitted in this plan.

Retrofit "B"

A 18" RCP discharges to the stream just upstream of the aerial sanitary sewer crossing directly across from the swimming pool. The headwall and concrete apron are approximately 3-4 feet above the existing channel. A large scour has occurred and is advancing past the headwall.

The proposed retrofit will include a junction box placed within the stable channel bank. The junction box will provide for a drop in elevation so that the proposed outlet pipe can be lowered to the existing channel elevation. The pipe will be extended outside of the scour and the end stabilized.

Retrofit "C"

A 15" pipe discharges stormwater from the inlet on Cape Avenue to the top of the stream bank in the park. The 15" pipe crosses under the park asphalt bike trail and over the existing sanitary sewer line which are both located in close proximity to the existing stream top of bank. The pipe end sections are currently separated.

Investigations were made to pull the existing system back to allow for the water to flow through an open channel however the existing bike trail was a concern for the parks department. They were concerned with potential hazards with water on the trail. Also a sanitary sewer upgrade is planned for the park which is just in the conceptual stages. The sewer may be relocated in this area. The proposed retrofit includes extending the existing 15" pipe into a junction box located at the top of the bank and dropping the elevation through the structure to the stream invert elevation. The pipe outlet into the stream will be tied into the vegetated geogrids proposed to be placed at the channel bottom.

Retrofit "D"

Two existing swales exist on either side of the existing park shelter. This area is all grassed. The swales are currently discharging over the top of the bank and causing erosion of already unstable steep banks. The water that enters these swales travel approximately 250 feet over grassed park land before they get to this point.

To prevent this point discharge the proposed retrofit will include the installation of two yard inlets and 15" pipe that will collect the overland flow and transfer it down to the stream. We have not increased the impervious area or changed the land use in any way. The retrofit is proposed to convert an unstable point discharge at the existing top of bank to a more stable discharge point at the stream bottom.

Retrofit "E"

An existing 18 inch corrugated metal pipe originates at a curb inlet in Chavis Way. The CMP currently discharges out of an unstable bank. The pipe is very damaged and falling apart in sections.

The proposed retrofit will relocate the discharge point of the 18 inch pipe onto a reconstructed flood plain. The pipe will discharge in the direction of flow of the stream. The new pipe will be an 18"RCP with a stabilized outlet.

Riparian Restoration

Low growing woody species will be planted on the steep banks of the incised channel. These species will be planted as bare rooted or potted stock during he dormant season. As much as possible existing established large trees tat are on site will be avoided. Riparian species were chosen to be aesthetically pleasing and to benefit wildlife by providing food or habitat. Only native species will be used to re-vegetate the riparian zone. A selection of the folowing species will be used at this site: Red Chokeberry (aronia arbutifolia), American Beautyberry (Callicarpa americana), Buttonbush (Cephalanthus occidentalis), Silky Dogwood (Cornus amomum), Witch Hazel (Hamamelis virginiana), Winterberry (Ilex, verticillata), Dog-hobble (Leucothoe fontanesiana), Spicebush (Lindera benzoin), Common Elderberry (Sambucus canadensis), Flowering Dogwood (Cornus rugosa). All flower species will be planted 3 to 4 feet apart, bush species 4-8 feet apart and trees will be planted 10-15 feet apart.

Chavis Park Downtown Raleigh, North Carolina

Garner Branch Location Map within Chavis Park, Raleigh North Carolina

LOCATION MAP
NOT TO SCALE

US Geological Survey Quadrangle Map Raleigh East & West, NC

Scale 1"= 2,000"

Garner Branch Chavis Park Raleigh, North Carolina

Culvert Under Lenoir Street Upstream Project Limit

Over Widened Stream Segment Just Downstream of the Culvert

Garner Branch Chavis Park Raleigh, North Carolina

Stream Reach Upstream of Stone Bridge

Rock Outcrop Just Upstream of Culverts Under MLK Blvd.

Garner Branch Chavis Park Raleigh, North Carolina

Chavis Park Stone Bridge

Supporting Stream Calculations

A = 18.58

Proposed Clannel:

existing (k) = 105

$$\frac{SL}{VL} = \frac{SL}{K} = \frac{VL}{I.05} = \frac{560}{I.05} = \frac{560}{I.05}$$

Sedement Transport Calculations

Sample #2

Tei = cuhcal dimensional shew stress

di = D50 of bed material (pavement) = 11.3 mm

do = Do of bar material (sut-parement) - 2.4 mm

$$T_{ai} = 0.0834 \left(\frac{d_{i'}}{d_{50}}\right)^{-.872}$$

 $= .0834 \left(\frac{11.3}{2.4}\right)^{-.872}$

7ci = 0.0216

Di = largest particle bar = 0.0" = 0.1674

S = :005a

entrumment:

d=(Tei)1.65 (Di)

d= .0216 (1.65)(.167)

d= 1.15 ft = 1.2 ft = 14 inclus

New Stream Slape = 0.0049 HHH

d= .0216 (1.65) (.167)

dx1.2 pt ok

Cross Sections Bankfull C		า	Width= 12' Bankfull Elevati	ion	92.36
		Elevation	Incremental	Incremental	Incremental
Station	Elevation	from Bankfull	Avg.Height Ft.	Distance Ft.	Area Sq.Ft.
49.4	92.36	0			•
			0.58	1.60	0.93
51	91.2	1.16			
			1.13	2.00	2.25
53	91.27	1.09			
			1.48	1.70	2.51
54.7	90.5	1.86			
			2.05	3.30	6.76
58	90.12	2.24			
			2.46	1.30	3.19
59.3	89.69	2.67			
			1.34	2.20	2.94
61.5	92.36	0			

18.58 Sq. Feet Total Area

dbkf=1.55 pt.

		Width = 16'			
Bankfull Cı	ross Section	1	Bankfull Elevati	ion	93.48
		Elevation	Incremental	Incremental	Incremental
Station	Elevation	from Bankfull	Avg.Height Ft.	Distance Ft.	Area Sq.Ft.
46	93.48	0			•
			0.24	2.00	0.48
48	93	0.48			
			0.80	1.40	1.12
49.4	92.36	1.12			
			1.70	1.60	2.72
51	91.2	2.28			
			2.25	2.00	4.49
53	91.27	2.21			
			2.60	1.70	4.41
54.7	90.5	2.98			
			3.17	3.30	10.46
58	90.12	3.36			
			3.58	1.30	4.65
59.3	89.69	3.79			
			1.90	2.70	5.12
62	93.48	0			

Total Area 33.45 Sq. Feet

	anis Park	k Uppul	God	Reach:	alen	y enti	i Rea	Lof	5hea	1007	Reach:	<u>:</u>		Reach:		
rty: 🛭 🗷	34B Ward	<u> </u>	<u> </u>	Date:	3- 9-6 RTICLE	of entr	ap				Date:			Date:	, , , , , , , , , , , , , , , , , , , 	
iches		Millimeters		11	711112	E COUN	3	TOT#	ITEM %	% CUM	TOT#	ITEM %	% CUM	TOT#	ITEM %	% CUI
	Silt / Clay	< .062	_S/.C-						ļ	 /	 '	-	<u> </u>	4	<u> </u>	
	Very Fine	.062125						<u> </u>	 	<u> </u>	<u> </u>	<u> </u>	<u> '</u>	_		+
	Fine	.12525	φ S 👺	MH			<u> </u>	11	11	<i>⊥11</i> _'			<u> </u> '	_ '		1
	Medium	.2550	A	Mimi	1	i	ļ!	/3	13	24			'	<u> </u>		1
	Coarse	.50 - 1.0	D	MILH	\		, <u> </u>	10	10	34						1
408	Very Coarse	1.0 - 2	24	IM III			1	9	9	43						<u></u>
816	Very Fine	2-4	000000	JHT'	1	!	,	5	5	48						1
622	Fine	4 - 5.7	80°66	ШШ	11:	<u> </u>	<u> </u>	/a	13	60						1
231	Fine	5.7 - 8	G	MIIII	1	‡ ‡ 1	ľ	9	9	69						
3144	Medium	8 - 11.3	R	HI HI	111	1	· · · · · · · · · · · · · · · · · · ·	13	13	82					1	
1463	Medium	11.3 - 16		THE BE	11		,	12	12	94						
6389	Coarse	16 - 22.6	E	11	-	1		a	2	96						
39 - 1.26	Coarse	22.6 - 32		1111			,	4	4	100						
26 - 1.77	Very Coarse	32 - 45	000 Y	3			,									
77 - 2.5	Very Coarse	45 - 64			1		,									
2.5 - 3.5	Small	64 - 90	C	A	1		,									
3.5 - 5.0	Small	90 - 128	СОВВІШ	<i>a</i>			,									
5.0 - 7.1	Large	128 - 180	В				,									
7.1 - 10.1	Large	180 - 256	REV	À		1										
0.1 - 14.3	Small	256 - 362	(COB)			1										
4.3 - 20	Small	362 - 512	Ŭ		1											$oldsymbol{igspace}$
20 - 40	Medium	512 - 1024				1		1	1							
40 - 80	Large-Vry Large	1024 - 2048							-	-	-		_	 	4	
	Bedrock		tak jij BDRK	<u> </u>	-			-	-		-			4	-	
				<u> </u>		TO	TALS -		1		1	1	1	1	1 - 1	

			PEBBLE	COUNT			***************************************		
Site: Chavi	s Park, Pavem	ent Sample#	2 at upp	er end,		Date: 4/19/	2001		
Party: Beck	ky Ward, Bob V	Vard				Reach: Garner Branch			
				Particle	Counts				
Inches	Particle	Millimeter		Riffles	Pools	Total No.	Item %	% Cumulative	
	Silt/Clay	< 0.062	S/C	0		0	0%	0%	
	Very Fine	.062125	S	2	0	2	2%	2%	
	Fine	.12525	Α	2	0	2	2%	4%	
	Medium	.2550	N	0	0	0	0%	4%	
	Coarse	.50 - 1.0	D	1	0	1	1%	5%	
.0408	Very Coarse	1.0 - 2.0	S	4	0	4	4%	9%	
.0816	Very Fine	2.0 - 4.0		3	0	3	3%	12%	
.1622	Fine.	4.0 - 5.7	G	16	0	16	16%	28%	
.2231	Fine	5.7 - 8.0	R	10	0	10	10%	38%	
.3144	Medium	8.0 - 11.3	Α	12	0	12	12%	50%	
.4463	Medium	11.3 - 16.0	V	26	0	26	26%	76%	
.6389	Coarse	16.0 - 22.6	E	13	0	13	13%	89%	
.89 - 1.26	Coarse	22.6 - 32.0	Ŀ	8	0	8	8%	97%	
1.26 - 1.77	,	32.0 - 45.0	S	3	0	3	3%	100%	
1.77 - 2.5	Very Coarse	45.0 - 64.0		0	0	0	0%	100%	
2.5 - 3.5	Small	64 - 90	C	0	0	0	0%	100%	
3.5 - 5.0	Small	90 - 128	О	0	0	0	0%	100%	
5.0 - 7.1	Large	128 - 180	В	0	0	0	0%	100%	
7.1 - 10.1	Large	180 - 256	L.	0	0	0	0%	100%	
10.1 - 14.3	Small	256 - 362	В	0	0	0	0%	100%	
14.3 - 20	Small	362 - 512	L	0	0	0	0%	100%	
20 - 40	Medium	512 - 1024	D	0	0	0	0%	100%	
40 - 80	Lrg- Very Lrg	1024 - 2048	R	0	0	0	0%	100%	
	Bedrock		BDRK	0	0	0	0%	100%	
			Totals	100	0	100	100%	100%	

Sample #2 Chart 7

Sub-pavement Sample
Location: Sample #2 located in upper reach of Garner Branch
Largest Particle on bar ======> 2 inches

							Total	Cumulative
Sieve Size	Sieve	Sieve Weight	Sieve +Sample	Sieve +Sample	Sieve +Sample	Sieve +Sample	Weight	Weight
	Size (mm)	(Fps)	Weight (Lbs)	Weight (Lbs)	Weight (Lbs)	Weight (Lbs)	(Lbs)	(Lbs)
1 inch	25						0.395	0.395
3/4 inch	19		2.15				0.905	1.3
1/2 inch	12.5						1.545	2.845
3/8 inch	9.5			1.26			1.185	4.03
No. 4	4.75			1.82			2.455	6.485
No. 8	2.36			1.91			2.325	8.81
No. 16	1.18		1.89	<u>4</u> .	1.57	1.15		11.44
No. 30	9.0			1.66	1.535		2.825	14.265
No. 50	0.3			1.59			2.415	16.68
No. 100	0.15	0.775	1.16				0.385	17.065
No. 200	0.075						0.1	17.165
Passing 200	<0.075		1.11				0.03	17.195

Sar Maknal

					362	
			Sieve Sample			
Site: Chavis	Site: Chavis Park, Sub-P	Pavement Sam	avement Sample #2 In upper reach of park	th of park		
Party: Beck	Party: Becky Ward, Bob	Ward				
,				•		
sayoul	Sieve	Millimeter		Wt. Retained (lbs)	% Passing	% Cumulative
	Size	< #200	S/C	0.03	0.17%	0.17%
0.0029	#200	0.0750	S	0.1	0.58%	0.76%
0.0059	#100	0.150	*	0.385	2.24%	3.00%
0.0117	#20	0:30	Z	2.415	14.04%	17.04%
0.0234	#30	0.60	O	2.825	16.43%	33.47%
0.0469	#16	1.18	S	2.63	15.30%	48.76%
0.0937	8# #	2.36	ပ	2.325	13.52%	62.29%
0.187	#	4.75	œ	2.455	14.28%	76.56%
0.374	3/8"	9.50	<	1.185	6.89%	83.45%
0.5	1/2"	12.50	\	1.545	8.99%	92.44%
0.748	3/4"	19.0	Ш	0.905	5.26%	%02'26
0.9843	-	25.0		0.395	2.30%	100.00%
1.4764	1 1/2"	37.5	S	0	0.00%	100.00%
1.9685	2"	50.0		0	0.00%	100.00%
2.5	2 1/2"	63.0	Ö	0	0.00%	100.00%
			0	0	0.00%	100.00%
			ന	0	0.00%	100.00%
				0	0.00%	100.00%
			æ	0	0.00%	100.00%
				0	%00.0	100.00%
			Q	0	%00.0	100.00%
			ጽ	0	0.00%	100.00%
	Bedrock		BDRK	0	0.00%	100.00%
			Totals	17.195	100%	100%

0.075 0.15 0.3 0.6 1.18 2.36 4.75 9.5 12.5 19 25 37.5 63

Supporting Storm Drainage Calculations

No. 5505 Engineer's Computation Pad

Drainage Area = 2.3Ac.

STORM PRAINAGE SYSTEM

Calculate Composite "C"

Impervious Anew = (
$$\frac{1}{3}$$
) $\frac{1}{2}.3 \times 0.95 = 0.73$

Park area = ($\frac{1}{3}$) $\frac{1}{2}.3 \times 0.25 = 0.19$

Apartments = ($\frac{1}{3}$) $\frac{1}{2}.3 \times 0.60 = 0.46$

Lemposite "C"

Composite "C"

Length of paper 45' - 1' Drop

$$S/qpe = \frac{1}{45} = 0.0222$$
 $Ge = 17efs$ Ok > 10cfs. design

Drumage Circa to youd inlet = 8.78 AC Composite "C"

Park = 5.0 Ac = 5.0(.25) = 1.25
Timperwo = 1.68 Ac 1.68 (.95) = 1.596
Apartment = 2.1 Ac 2.1 (.60) =
$$\frac{1.26}{4.106/8.78}$$
 = 0.47
Q = CIA = 0.47(7.22)(8.78)
Q = 29.8 cfs.

Moe 24" because can be set at, as little as 2% and still will wak where an 18" would have to be set at a minimum 7.5% skyre to handle the plans.

Retroyet "A" Centrucied -

Click - Orgeni Equation and deturnin openings for yard

Co = 0.60 A = Cross sechmil Anea = 3.75 pt 2

openings use all 4 sides

Design Rip Rap outlet Protection:

18"RCP. State Erosien Central Manual Figure 8,06a

Mor Class Arup Rup.

Stam Dramage Retro fit - B

Determine Discharge to System:

Pramoge area = 2.5 AC

Determine minimum stope of 18" RCP.

Needs to be at 1.5% to cay anticipated water

Rep Rap. outlet Protection - 8.06 b - Eresian Certal Manual-La = 12 pt. Use Class II Rep Raps because discharging into main Place JB to transition grade to lower elevation JB-1

Retrofit C"

Brainage area = 1.2 AC C=.60

I= 7.22

To =5 mm

Q = CIA

= 1,2(,6)(7,22)

= 5.2 cfs.

Existing System

15"@ 11.4% slape gc = 24cfs / ok

Minimum Slope to cary 26cts.

Place Junehin Box 6-8' depth (JB-2)

Determeni Ripi Rap - Outlet Protection - Figure 8.066

La = 2'

Use ClassII because in Claral 18"th.

NewStorm Drainage System at Existing Park Sheller Status 64+00

System is being added to transition point source locations at top of bunk to disclarge at the clannel bottom location.

Determine Discharge to YI-2

Both flow through approx. 250 of purkland before enter new system.

A= 1.85 Ac

Residential = .925 x .60 = .56

Park = .125 x.25 = .23

.79/1.25 = .43 = C

Q=CIA = .43(1.85)(7.22) = 5.74cfs.

Octameni Discharge to 4I-3

A= .41Ac

area is all park land C = . 25

Q=CIA= .41(.25)(7.22) = .74cfs.

Sterm Drainage System - Cent'd.

B. Ward 2-14-02

Club Capacity of 15" pypi outlet from 4I-2

Need to have olyse (minimism) = 1% to have a Copped of 7%.

Look at Orgen Egun for Inlet capacity -

Std opening - 2.5 x .5 x 4 sides = Anew = 2.5

S = CDAVagh

Cp = 0.60

A = Crossectoral Area = 2.5H2

g = 32.2 11/32 h= during head = .5 ft. Q = 0.6 (2.5) Va (32.2)(.5)

Q= 8.5 cs

Therefore minimum openings = 2.5 x. 5 high all four sides. Both inlits

Rip Rap outlet Protestion: Figure 8066

La = 8

Storm Drainage Retrofit "="

Drumage area = 2.6 Ac. area is all Residential C = . 6

B=CIA = .6(7.22)(2.6) = 11.3 cfs.

Determine Minimum stope on 16" pipe per Capacity - 1.5% - yelds Sc= 14 cfs.

Detumine Rep Rap duttet Prokehin -La = 12

Mstrpip2.xls

Location: Date:				T							
Date:	Downtown F	Downtown Raleigh, North Carolii	th Carolina								
	02/14/2002										
.: م	Becky Ward Consulting	Consulting									
_	,										
			Mannings Equation:	ation:							
			Q=1.486/n*A*R^2/3*S^1/2	1/1/3*S/1/	2						
			V=1.486/n*R^2/3*S^1/2	/3*S^1/2							
			Conveyance K*= (1.486/n)*A*R^2/3	'= (1.486/r)*A*R^2/3						
			Qc= S^1/2*K*	/2*K* Pipe capacity	city						
Pipe Segme	Pipe Segment Calculations	ons							Pipe Segn	Pipe Segment Calculations Cont	itions Conti
			Pipe	Pipe						full flow pipe "Q"design	"Q"design
			elevation	elevation Pipe	Pipe					capacity	flow
Pipe segment	1t		invert in	invert out Length	Length		Slope (ft/ffPipe area	Pipe area	conveyand	cfs	cfs
From - To	D (in)	D (ft)				ů	S	Ap	*	၁ტ	PO
Dark MI K	18	1.7			45	0.012	0 100	1 707	113.8	35 99	10.00
New Yinlet	24	2			2 08	0.012					30.00
Rep HW	18	1.5			25	0.012					
Exst Cape	15	1.25			100	0.012				23.67	5.50
New cape	15	1.25			20	0.012				7.01	
YI-2	15	1.25			09	0.012				9.91	6.00
YI-3	15	1.25			30	0.012		1.227			7
Chavis way	18	1.5			0/	0.012	0.070	1.707	113.8	30.11	12.00

Bank Erosion Potential Data

Wildland Hyd	•		<i>ld Data Form</i> SION POTEN	ITIAI	1999RAM	
Stream Name Xsec. No. <u>S</u> Location/Note	Garner Br a71+00 N-Br	anch -Ch	avis Park	Date:	4-19-01	
	<i>Bankfull</i> <i>Root</i> De Bank <i>An</i>	ight (54) Height (94) nsity (%) gle (degrees) Protection (%	18" = 6"depth 80°	.2' 1.5' - density =	40%	
		,	BANK EROS	ION POTENTIAL		
CRITERIA	VERY LOW	Low	MODERATE	HIGH	VERY HIGH	EXTREME

CRITERIA	VER	VERY LOW		~***	1						γ		
	TERT DOW		<u> </u>	Low		MODERATE		HIGH		VERY HIGH		EXTREME	
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	UNDED	
Bank Ht/Bkf Ht	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	1.2-1.5	4.0-5.9	1.6-2.0	6.0-7.9	2.1-2.3	8.0-(0.0)	>2.8	10	
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-00	4.0(5.9)	0.29-1.15	6.0-7.9	0.1405	8.0-9.0	<.05	10	
Root Density (%)	80-100	1.0-1.9	55-79	2.0-3.9	39433).	1.0-5-3	15-29	6.0-7.9	5-14	8.0-9.0	⊴5.0	10	
Bank Angle (Degrees)	0-20	1.0-1.9	21-60	2.0-3.9	61-80	4.0(5.9)	81-90	6.0-7.9	91-119	8.0-9.0	>119	10	
Surface Proc. (%)	80-100	1.0-1.9	55-79	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	10-15	8.0-9.0			
TOTALS								-		0.0-9.0	(E)	100	
	ļ					16.8				9.0		10	
		5-9.5		10-19.5		20-29.5		30-39.5		40-45		46-50	
Numerical Adjustments	No	nc								10-12		40-30	

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%,

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO

Nork. BANKFULL STAGE

Wildland Hydrology	Field Data Form BANK EROSION POTENTIAL	1999RAM
Stream Name Garner Xsec. No. Str. 70+00 Location/Note: # 2	S-Bak, Crew: B& B. Ward	e: <u>4-19-01</u>
Bai Ro Bai	nk Height (ft) 20' nkfull Height (ft) 1.67 ot Density (%) /0-12" root death nk Angle (degrees) 30-45% rface Protection (%) 50% brukkers	density = 30% 1 50% grass

	BANK EROSION POTENTIAL											
CRITERIA	VERY LOW		Low		MODERATE		HIGH		VERY HIGH		EXTREME	
	VALUE	DVDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	MDEX	VALUE	DNDED
Bank Ht/Bkf Ht	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	1.2-1.5	4.0-5.9	1.6-2.0	6.0-7.9	2.1-2.8	8.0-9.0	(2.8)	(10)
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-0.30	4.0-5.9	0.29-1.15	6.0-7.9	0.14-(05)	8.0-6.0)	د٥٥	10
Root Density (%)	80-100	1.0-1.9	55-79	2.0-3.9	33-54	(1.0)5.9	15-29	6.0-7.9	5-14	8.0-9.0	<5.0	10
Bank Angle (Degrees)	0-20	1.0-1.9	21-60	2039	61-80	4.0-5.9	81-90	6.0-7.9	91-119	8.0-9.0	>119	10
Surface Proc. (%)	80-100	18:19	55-79	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	10-15	8.0-9.0	<10	10
TOTALS		1,4		3		4				9		
		5-9.5		10-19,5	(20-29.5		30-39.5		40-45		10
Numerical Adjustments	Non	12		·						-		

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

501/ n/ (1000 THEN NO ADJUSTMENT

force

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO No

BANKFULL STAGE

BEHI 27.4 moderate w/ Rip Rap. - Adj to Low

Wildland Hydrology	Field Data Form	1999RAM
	BANK EROSION POTENTIA	AL
Stream Name Garne	- Branch - Chavis Park	Date: 4-19-01
Xsec. No. 5 ta 66+20 5-	BNK Crew: B& B. Ward	
Location/Note: #3	Large trice Knots ex	pescol
Bani	(Height (f+) 20'	
Bani	kfull Height (1) 16"	
	t Density (%) 12-14 "death -	50% density
	KAngle (degrees) 90%	d
Surf	ace Protection (%) 20%	

			è		BAN	k eros	ION POT	ENTIAL				
CRITERIA	VERY LOW		Low		MODERATE		нісн		VERY HIGH		EXTREME	
	VALUE	INDEX	VALUE	DADEX	VALUE	INDEX	VALUE	INDEX	VALUE	DNDEX	VALUE	INDEX
Bank Ht/Bkf Ht	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	12-15	4.0-5.9	1.6-2.0	6.0-7.9	2.1-2.8	8.0-9.0	228	10
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-0.30	4.0-5.9	0.29-1.15	6.0-7.9	0.14-(8)	8.00.0	د05	10
Root Density (%)	80-100	1.0-1.9	55-79	2.0-3.9	30-64)	4.0(5.9)	15-29	6.0-7.9	5-14	8.0-9.0	4.0	10
Bank Angle (Degrees)	0-20	1.0-1.9	21-60	2.0-3.9	61-80	4.0-5.9	81(90)	6.0(7.9)	91-119	8.0-9.0	>119	10
Surface Prot. (%)	80-100	1.0-1.9	55-79	2.0-3.9	30-54	4.0-5.9	15,29	6.0-7.85	10-15	8.0-9.0	<10	10
TOTALS						5.9		14.9		9		10
_		5-9.5		10-19.5		20-29.5		30-39.5		40-45		46-50
Numerical Adjustments	N	ne										

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO

NOTE

BANKFULL STAGE

Picture was (#1)
paken

Wildland Hydrology	BANK EROSION POTENTIAL	1999RAM
Stream Name <u>Gar</u> Xsec. No. <u>Sta 65+20</u> Location/Note: #4	ner Branch - Chavis Park Da N-BNK Crew: B&B. Ward	ate: 4-19-01
	Bank Height (ft) 9 Bankfull Height (ft) 14" = 1.2" Root Density (%) 10" dcptl - 2 Bank Angle (degrees) 70-90 S Surface Protection (%) 80%	60%

	·				BAN	K EROS	ion pot	ENTIAL	,			
CRITERIA	VERY LOW		LOW		MODERATE		нісн		VERY HIGH		EXTREME	
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX
Bank Ht/Bkf Ht	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	1.2-1.5	4.0-5.9	1.6-2.0	6.0-7.9	2.1-2.8	8.0-9.0	23	(10)
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-0.30	4.0-5.9	0.29-1.15	6.0-7.9	0.1405	\$05°50)	ر۵5	10
Root Density (%)	80-100	1.0-1.9	55-79	2039	30-54	4.0-5.9	15-29	6.0-7.9	5-14	8.0-9.0	රු	10
Bank Angle (Degrees)	0-20	1.0-1.9	21-60	2.0-3.9	61-80	4.0-5.9	81-80	6.0(7.9)	91-119	8.0-9.0	>119	10
Surface Prot. (%)	80,100	(1.0)1.9	55-79	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	10-15	8.0-9.0	<10	10
TOTALS		1.0		3				7.9	 	18.5		10
		5-9.5		10-19.5		20-29.5		30-39.5		40-45		46-50
Numerical Adjustments												

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO

BANKFULL STAGE

None

Wildland Hydrology	Field Data Form BANK EROSION POTENTIA	1999RAM
Xsec. No. <u>Sta. 69+50</u> S	ner Brand - Chavis Park -BNK Crew: BSB Ward	Date: 4-19-01
Location/Note: # 5	3	
Ba Ro Ba	ink Height (ft) 18 inkfull Height (ft) 16" = 1.3' int Density (%) 12" depth, ink Angle (degrees) /20° inface Protection (%) 20%	40%

-			t.		BAN	K EROS	ION POT	ENTIAL	•			
CRITERIA	VERY LOW		LOW		MODERATE		нісн		VERY HIGH		EXTREME	
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	DNDEX
Bank Hi/Bkf Hi	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	1.2-1.5	4.0-5.9	1.6-2.0	6.0-7.9	2.1-2.8	8.0-9.0	(28)	10
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-0.30	4.0-5.9	0.29-1.15	6.0-7.9	0.14-65	8.0(9.0)	۷.05	10
Root Density (%)	80-100	1.0-1.9	55-79	2.0-3.9	30-54	4.953	15-29	6.0-7.9	5-14	8.0-9.0	රු	10
Bank Angle (Degrees)	0-20	1.0-1.9	21-60	2.0-3.9	61-80	4.0-5.9	81-90	6.0-7.9	91-119	8.0-9.0	(>119)	100
Surface Prot. (%)	80-100	1.0-1.9	55-79	2.0-3.9	30-54	4.0-5.9	15-28	6030	10-15	8.0-9.0	<10	10
TOTALS						4,5		7		9		20
		5-9.5		10-19.5		20-29.5		30-39.5		40-45		46-50
Numerical Adjustments	·											

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO

NOTE BANKFULL STAGE

BEHI 40.5 - Very High

71cture (#2) Token

Wildland Hydrology	Field Data Form BANK EROSION POTENTIAL	1999RAM
Stream Name <u>6a</u> Xsec. No. <u>Sha. 63+00</u> Location/Note: <u>H</u>		Date: <u>4- /9-0/</u>
E E * F	Bank Height (ft) 251 Bankfull Height (ft) 18" = 1.5" Root Density (%) Lo" by surface plants Bank Angle (degrees) 60-70°	plus 2-3 for har roots D=85%

				-	BAN	K EROS	ion pot	ENTIAL				
CRITERIA	VERY LOW		Low		MODERATE		нісн		VERY HIGH		EXTREME	
	VALUE	DVDEX	VALUE	INDEX	VALUE	DNDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX
Bank Ht/Bkf Ht	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	1.2-1.5	4.0-5.9	1.6-2.0	6.0-7.9	2.1-2.8	8.0-9.0	>2.8	10
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-0.30	4.0-5.9	0.29-1.15	6.0-7.9	0.1405	8.09.0	<.05	10
Root Density (%)	100	1.01.9	55-79	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	5-14	8.0-9.0	ර.0	10
Bank Angle (Degrees)	0-20	1.0-1.9	21-60	2.0-3.9	61-80	4.04.9	81-90	6.0-7.9	91-119	8.0-9.0	>119	10
Surface Prot. (%)	80-100	1973	55-79	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	10-15	8.0-9.0	<10	10
TOTALS		2,5				5			 	8		10
		5-9.5		10-19.5		20-29.5		30-39.5		40-45		46-50
Numerical Adjustments	No	e										

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO

NONE BANKFULL STAGE

BEHI 25.5 Moderate

Mistokic pudge broughts

Wildland Hydrology	Field Data Form BANK EROSION POTENTIAL	1999RAM
Stream Name <u>Garn</u> Xsec. No. <u>Sta 61+00</u> E- Location/Note: 7	er Branch - Chavis Park Dat -BNK Crew: BAB Ward	e: <u>4~19-01</u>
Bai Rod Bai	nk Height (ft) 12-15♥ nkfull Height (ft) 17" = 1,4 ot Density (%) 12"-24" Density nk Angle (degrees) 60-70° rface Protection (%) 90%	= 80%

			,		BAN	K EROS	ION POT	ENTIAL				
CRITERIA	VERY LOW		Low		MODERATE		HIGH		VERY HIGH		EXTREME	
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	DNDEX
Bank Hr/Bkf Hz	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	1.2-1.5	4.0-5.9	1.6-2.0	6.0-7.9	2.1-2.8	8.0-9.0	>2.8	(10)
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-0.30	4.0-5.9	0.29-1.15	6.0-7.9	0.1405	0.0	<.05	10
Root Density (%)	80-100	(1.0)1.9	55-79	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	5-14	8.0-9.0	5.0	10
Bank Angle (Degrees)	0-20	1.0-1.9	21-60	2.0-3.9	61-80	(1.0)5.9	81-90	6.0-7.9	91-119	8.0-9.0	>119	10
Surface Proc. (%)	80-100	183	55-79	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	10-15	8.0-9.0	<10	10
TOTALS		2.5				4				8		
		5-9.5		10-19.5		20-29.5		30-39.5		40-45		10
Numerical Adjustments											<u> </u>	

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO

MONE

BANKFULL STAGE

24.5 - Moderate

y dure #4

Wildland Hydrology	Field Data Form	1999RAM
Stream Name@ Xsec. No. <u>Sh. 58+50</u> Location/Note: <u></u> # 8	BANK EROSION POTENTIAL Farner Branch - Charis Park Date: N-BNL Crew: RAB Ward	4-19-01
E F E	Bank Height (ft) 15 Bankfull Height (ft) 14" = 1.2' Root Density (%) 3-4" + reus shrubs, 1 Bank Angle (degrees) 80-90° Burface Protection (%) 70%	"W/ Surface vegetation Densil

	· · · · · · · · · · · · · · · · · · ·				BAN	ik eros	SION POT	ENTIAL				
CRITERIA	VER	Low	u			RATE	нісн		VERY HIGH		EXTREME	
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	7	 	T
Bank HI/Bk/ Ht	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	1.2-1.5	4.0-5.9	1.6-2.0	6.0-7.9	+	INDEX	VALUE	DIOD
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-0.30		0.29-1.15		2.1-2.8	8.0-9.0	>2.8	10
Root Density (%)	80-100	1.0-1.9	55-79	2.0-3.9	30-54			6,0,7,9	0.1405	8.0-9.0	<.05	10
Bank Angle (Degrees)	0-20	1.0-1.9	21-60			4.0(5.9)	15-29	6.0-7.9	5-14	8.0-9.0	ර.0	10
Surface Proc. (%)	80-100			2.0-3.9	61-80	4.0-5.9	81-90	667.9	91-119	8.0-9.0	>119	10
TOTALS	- IW	1.0-1.9	55-79	263	30-54	4.0-5.9	15-29	6.0-7.9	10-15	8.0-9.0	<10	10
·ONES				3.3		5.9		14				10
		5-9.5		10-19.5		20-29.5		30-39.5	-	40-45	 	16-50
Numerical Adjustments												

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO

BANKFULL STAGE 1/8/0

Picture *5

Wildland Hydrology	Field Data Form BANK EROSION POTENTIAL	1999RAM
Stream Name Grant Stream No. Stre	O W-Bnk Crew: B&B Ward	: <u>4-19-01</u>
••	Bank Height (ft) D' = 1.5' Bankfull Height (ft) 10" = 1.5' Root Density (%) 8" = .67' D = 40' Bank Angle (degrees) 80 - 110 Surface Protection (%) 10%	<u></u>

					BAN	K EROS	SION POT	ENTIAL				
CRITERIA	VERY LOW		LOW		MODERATE		HIGH		VERY HIGH		EXTREME	
	VALUE	INDEX	VALUE	INDEX	VALUE	DNDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX
Bank Ht/Bkf Ht	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	12-15	4.0-5.9	1.6-2.0	6.0-7.9	2.1-2.8	8.0-9.0	>2.8	10
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-0.30	4.0-5.9	0.29-1.15	6.0-7.9	0.1405	8.0(9.0)	<.05	10
Root Density (%)	80-100	1.0-1.9	55-79	2.0-3.9	30-54	4659	15-29	6.0-7.9	5-14	8.0-9.0	4.0	10
Bank Angle (Degrees)	0-20	1.0-1.9	21-60	2.0-3.9	61-80	4.0-5.9	81-90	6.0-7.9	91-119		>119	10
Surface Proc. (%)	80-100	1.0-1.9	55-79	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	10-15	8.09.0	<10	
TOTALS						5			1.6.0	25.5	£10	10
		5-9.5		10-19.5		20-29.5		30-39.5		40-15		10
Numerical Adjustments												

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO None BANKFULL STAGE

Wildland Hydrology	Field Data Form BANK EROSION POTENTIAL	1999RAM
Stream Name	rner Branch - Chovis Park Date S-BNK Crew: BAR Wood	e: 4-19-01
	Bank Height (ft) 17 Bankfull Height (ft) 20% Root Density (%) 18"root (suruls) plus 6 Bank Angle (degrees) 60° Surface Protection (%) 90%	-8" surface plants D = 70%

CRITERIA	VERY LOW				1		T		7			
	VLK	LUW	Low		MODERATE		HIGH		VERY HIGH		EXTREME	
	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	DIDEX	VALUE	Υ
Bank HI/Bkf Hz	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	1.2-1.5	4.0-5.9	1.6-2.0	6.0-7.9	2.1-2.8	8.0-9.0		INDEX
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50	2.0-3.9	0.49-0.30		0.29-1.15	6.0-7.9	0.1405		>2.8	(10)
Root Density (%)	80-100	1.0-1.9	55-79	2.0(3.9)		4.0-5.9	 			8.0-(2.0)	<.05	10
Bank Angle (Degrees)	0-20	1.0-1.9	21-60		-		15-29	6.0-7.9	5-14	8.0-9.0	ර.0	10
Surface Proc. (%)				2.0-3.9	61-80	£35.9	81-90	6.0-7.9	91-119	8.0-9.0	>119	10
	80-100	10.59	55-79	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	10-15	8.0-9.0	<10	10
TOTALS		1.5		3.9		4.0				0.0		-
		5-9.5		10-19.5		20-29.5	 	30-39.5	 	9.0		10
Numerical Adjustments	·							00032		40-45		46-50

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

SILT/CLAY: NO ADJUSTMENT

None

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO

BANKFULL STAGE

28.4- Moduate

Wildland Hydrology	Field Data Form BANK EROSION POTENTIAL	1999RAM
Stream Name Garn Xsec. No. Str. 54+50 Location/Note: #11	2 4 64	ate: <u>4-19-01</u>
<i>B</i> <i>R</i> B	Bank Height (ft) \\Z\\ Bankfull Height (ft) \\\[\left[\left[\left] \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	naily = 70%

CRITERIA	VERY	Low			1		7						
	Vale	LWW	Low		MODERATE		HIGH		VERY HIGH		EXTREME		
	VALUE	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX	VALUE	INDEX		
Bank Hubki He	1.0-1.1	1.0-1.9	1.1-1.19	2.0-3.9	1.2-1.5	4.0-5.9	1.6-2.0		+	 	VALUE	INDIX	
Root Depth/Bank Ht	1.0-0.9	1.0-1.9	0.89-0.50		 		 	6.0-7.9	2.1-2.8	8.0-9.0	>2.8	(10)	
· · · · · · · · · · · · · · · · · · ·		 	0.89-0.30	2.0-3.9	0.49-0.30	4.0-5.9	0.29-1.15	6.0 7.9	0.1405	8.0-9.0	<.05	10	
Root Density (%)	80-100	1.0-1.9	55-79	253	30-54	4.0-5.9	15-29	6.0-7.9	5-14	8.0-9.0	5.0	 	
Bank Angle (Degrees)	0-20	1.0-1.9	21-60	2.0-3.9	61-80	(1.0)5.9	81-90		 		0.0	10	
Surface Proc. (%)	80-100	1040	55-79	20.00		_		6.0-7.9	91-119	8.0-9.0	>119	10	
TOTALS		188	33-19	2.0-3.9	30-54	4.0-5.9	15-29	6.0-7.9	10-15	8.0-9.0	<10	10	
IONE		1.5		2.5		4		6					
		5-9.5		10-19.5		(20-29.5)				<u> </u>		0	
vumerical Vdjustments								30-39.5		40-45		46-50	

BOULDERS: BANK EROSION POTENTIAL LOW

COBBLE: DECREASE BY ONE CATEGORY UNLESS MIXTURE OF GRAVEL/SAND IS OVER 50%.

THEN NO ADJUSTMENT

GRAVEL: ADJUST VALUES UP BY 5-10 POINTS DEPENDING ON COMPOSITION OF SAND

SAND: ADJUST VALUES UP BY 10 POINTS

→ SILT/CLAY: NO ADJUSTMENT

STRATIFICATION: 5-10 POINTS (UPWARD) DEPENDING ON POSITION OF UNSTABLE LAYERS IN RELATION TO

NME

BEHI 24 - Moderate